Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis.
نویسندگان
چکیده
Craniorachischisis (CRN) is a severe neural tube defect (NTD) resulting from failure to initiate closure, leaving the hindbrain and spinal neural tube entirely open. Clues to the genetic basis of this condition come from several mouse models, which harbor mutations in core members of the planar cell polarity (PCP) signaling pathway. Previous studies of humans with CRN failed to identify mutations in the core PCP genes, VANGL1 and VANGL2. Here, we analyzed other key PCP genes: CELSR1, PRICKLE1, PTK7, and SCRIB, with the finding of eight potentially causative mutations in both CELSR1 and SCRIB. Functional effects of these unique or rare human variants were evaluated using known protein-protein interactions as well as subcellular protein localization. While protein interactions were not affected, variants from five of the 36 patients exhibited a profound alteration in subcellular protein localization, with diminution or abolition of trafficking to the plasma membrane. Comparable effects were seen in the crash and spin cycle mouse Celsr1 mutants, and the line-90 mouse Scrib mutant. We conclude that missense variants in CELSR1 and SCRIB may represent a cause of CRN in humans, as in mice, with defective PCP protein trafficking to the plasma membrane a likely pathogenic mechanism.
منابع مشابه
Mutations in Planar Cell Polarity Gene SCRIB Are Associated with Spina Bifida
Neural tube defects (NTDs) (OMIM #182940) including anencephaly, spina bifida and craniorachischisis, are severe congenital malformations that affect 0.5-1 in 1,000 live births in the United States, with varying prevalence around the world. Mutations in planar cell polarity (PCP) genes are believed to cause a variety of NTDs in both mice and humans. SCRIB is a PCP-associated gene. Mice that are...
متن کاملGenetic interactions between planar cell polarity genes cause diverse neural tube defects in mice
Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygo...
متن کاملCdx mediates neural tube closure through transcriptional regulation of the planar cell polarity gene Ptk7.
The vertebrate Cdx genes (Cdx1, Cdx2 and Cdx4) encode homeodomain transcription factors with well-established roles in anteroposterior patterning. To circumvent the peri-implantation lethality inherent to Cdx2 loss of function, we previously used the Cre-loxP system to ablate Cdx2 at post-implantation stages and confirmed a crucial role for Cdx2 function in events related to axial extension. As...
متن کاملMutation of Celsr1 Disrupts Planar Polarity of Inner Ear Hair Cells and Causes Severe Neural Tube Defects in the Mouse
We identified two novel mouse mutants with abnormal head-shaking behavior and neural tube defects during the course of independent ENU mutagenesis experiments. The heterozygous and homozygous mutants exhibit defects in the orientation of sensory hair cells in the organ of Corti, indicating a defect in planar cell polarity. The homozygous mutants exhibit severe neural tube defects as a result of...
متن کاملConvergent extension analysis in mouse whole embryo culture.
Mutations have been identified in a non-canonical Wnt signalling cascade (the planar cell polarity pathway) in several mouse genetic models of severe neural tube defects. In each of these models, neurulation fails to be initiated at the 3-4 somite stage, leading to an almost entirely open neural tube (termed craniorachischisis). Studies in whole embryo culture have identified a defect in the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human mutation
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2012